FAR BEYOND

MAT122

Antiderivatives

Antiderivatives - Intro

If f' is a derivative of f then f is an <u>antiderivative</u> of f'

Likewise, f' is an antiderivative of f''

Notation:

or integral
$$\int f(x)dx$$

A function F is called an antiderivative of f on some interval I if F'(x) = f(x) for all x on I.

$$g(x) = \frac{1}{3}x^3$$

$$g'(x) = \frac{1}{3} 3x^2$$

$$g'(x) = x^2$$
 : if $f(x) = x^2$

then
$$F(x) = \frac{1}{3}x^3$$
 but ...

$$g(x) = \frac{1}{3}x^3 + 1$$
 F $g(x) = \frac{1}{3}x^3 + 7$ F $g(x) = \frac{1}{3}x^3 + C$

$$g'(x) = x^2$$
 f $g'(x) = x^2$ f $g'(x) = x^2$

where C is a constant

Common Antiderivatives

If F is an antiderivative of f on I then the **general** antiderivative of f on I is F(x) + C where C is an arbitrary constant.

To find the general antiderivative of a function, determine what it is the derivative of and add + C.

given
$$f(x) = e^x$$

then $F(x) = e^x + C$

given
$$f(x) = \frac{1}{x}$$
 derivative of $\ln x$
then $F(x) = \ln |x| + C$ domain of $\ln x$ is $(0, \infty)$

Antiderivative of Power Function

if
$$f(x) = x^n$$

then $F(x) = \frac{x^{n+1}}{n+1} + C$

ex.
$$f(x) = x^2$$
 ex. $f(x) = 8x^9 - 3x^6 + 12x^3$
then $F(x) = \frac{x^{2+1}}{2+1} + C$ then $F(x) = \frac{8x^{10}}{10} - \frac{3x^7}{7} + \frac{12x^4}{4} + C$

$$= \frac{x^3}{3} + C$$

$$= \frac{4}{5}x^{10} - \frac{3}{7}x^7 + 3x^4 + C$$

ex.
$$f(x) = \frac{10}{x^9}$$

 $= 10x^{-9}$
 $F(x) = \frac{10x^{-8}}{-8} + C$
 $= \left[-\frac{5}{4x^8} + C \right]$

Antiderivative of Power Function - Do

Do: Find the general antiderivatives of the following:

$$f(x) = 4x^3$$
 $f(x) = 5x^9 - 14x^6 + 12x^3$ then $F(x) =$

if
$$f(x) = x^n$$

then $F(x) = \frac{x^{n+1}}{n+1} + C$

ex.
$$f(x) = \frac{6}{x^2}$$

then
$$F(x) =$$